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The theoretical and experimental developments in the interfacial dynamics and 
the formation of viscous fingering patterns in Hele-Shaw cells of liquid crystal-air 
systems are summarized and discussed. These include radial and linear cells with 
or without grooves engraved on the cell plates. Instabilities of fingers, the role of 
intrinsic and extrinsic anisotropies, etc., are emphasized. In a linear cell, when the 
injected air is kept at constant pressure, a whole sequence of successive instabilities 
of fingers (hump, tip-splitting, sidewrinkling, sidebranching and DLA-like struc- 
ture) is observed in a single run of the experiment. In our theory, the equations of 
motion of nematic flows in Hele-Shaw cells are derived from the Ericksen-Leslie 
equations. In the linear approximation, the equations resemble those of isotropic 
liquids with the presence of effective viscosities and anisotropic surface tension. 
Experimental observations are interpreted with the introduction of an effective 
control parameter which may be time dependent. Special features of viscous fingers 
in liquid crystals in contrast to those in isotropic liquids, such as asymmetric 
dendritics, displacement of the finger from the central axis of the linear cell, and 
reentrant sequence of patterns, are pointed out. Plausible explanations of these 
phenomena are given. In this newly developed field, a large number of interesting 
problems remain to be solved. 

1. Introduction 
The formation of viscous fingering patterns [l, 21 is one of many such problems 

in systems far from equilibrium, such as diffusion-limited aggregation (DLA) 
[3], electrodeposition [4] and directional solidification [5 ] .  These patterns are governed 
by the interplay of anisotropy, fluctuations (noise) and the driving force in each 
case [6]. The development in last few years shows the emergence of a unifying 
principle of ‘microscopic solvability’ underlying the pattern formation in these diverse 
systems [7]. 

Viscous fingers appear as interfacial patterns when a viscous fluid is displaced by 
a less viscous fluid [8] in a Hele-Shaw cell, i.e. two plates with very small separation 
b. In  the original experiment of Saffman and Taylor [8], a linear cell was used and a 
steady single finger appeared with il approximately equal to  lj2. Here 1 is the ratio 
of the finger width to the cell width w. Subsequently, a radial Hele-Shaw cell was used 
by Paterson [9]. 
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1814 L. Lam et al. 

There are three major areas in the study of viscous fingers using isotropic liquids: 

(i) Formation of fingers. Experimentally a single steady finger of well defined 
shape is observed. How this can be understood theoretically is a typical 
pattern-selection problem. Furthermore, properties of the unstable interface 
before the emergence of a single finger [ 1,2], or fingers in the case of a radial 
cell [lo], are well studied. 

(ii) Instabilities of fingers. This problem has been investigated theoretically 
[7, 11-14] and experimentally [lS, 161. Noise is found to be important in pro- 
ducing instabilities such as the symmetric nonoscillatory mode, hump, tip- 
wobbling, sidebranching and tip-splitting, even though the finger is linearly 
stable. In linear cells only tip-splitting [15, 161 and hump [16] are observed. 

(iii) The role of anisotropy. Anisotropy is demonstrated experimentally [17 (a)] in 
a radial cell as a necessary condition for dendritics with stable tips to form. 
With anisotropic surface tension the finger in a linear cell is predicted [17 (b)] 
to assume a family of possible widths. 

In [17 (a)] extrinsic anisotropy (produced by engraving a triangular or square grid 
on the cell plate) is used. Since liquid crystals are intrinsically anisotropic they become 
the natural media to be used in Hele-Shaw cells to study anisotropic and other effects. 
Experimental works in this regard include those of Buka et al. [18-201, Shao, Liu and 
Lam [21], Zheng et al. [22], and Yang et al. 1231. Theoretical study specific to liquid 
crystal flows in Hele-Shaw cells was given by Lam [24]. 

Here, theoretical [24] and experimental [ 18-23] developments mentioned above, 
together with some new results, will be summarized and discussed. Special attention 
will be given to non-steady situations. The presentation is unavoidably brief due to 
the limited length of this paper. More details can be found in 1241. A large number of 
unsolved problems are noted. 

2. Theory 
From the Ericksen-Leslie theory, the flow of incompressible nematics in a Hele- 

Shaw cell is found to be described by [24] 

Qv'i,t + P,; = [-Knj,inj,z + 4l ,z ,  i X ,  y ,  z (1) 
and 

where i is the normal of the cell, (. . .),i E a(. . .)/dz, etc., and the one-elastic constant 
approximation is assumed. All quantities are functions of x, y ,  z and t ,  and vz = 0. 
a is a Lagrangian multiplier due to n2 = 1. v and n are velocity and director of the 
molecule, respectively, and p is the pressure. Here, 

= v x . 2  [a,$nf + +(a3 + a6)n: f - a,)nl + $a43 

+ vy.z b , n S  + +(a3 + a,)ln,ny + a2n,nx,, + a3nxnz,r, 

o:, = vx,z [a,n: + +(az + a3 + as + ~6)1nxn, 

+ vy,i [ a d  + +(a2 + a3 + as + a6)lnynz + (a2 + a3)Hzni,,, 

(3) 

(4) 
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Viscous fingering in liquid crystals 1815 

olz is given by (3) with the interchange of x and y .  Tn (2), using ninij = 0, nz,zz can be 
replaced by 

In the steady or quasisteady case, equation (2) can be solved to give 

%z = K [nx,rr(aZnl - w:) + ny,rz (%nxn,) + nz.22 ( - ~ z n , n , ) l .  (6)  
Similarly, v , , ~  is given by (6)  with the interchange of x and y .  The determinant D is 
given by 

D = -azn, [a3 - (a, + a&O. (7) 
In principle, v , , ~  and v , , ~  from (6) can be put into (3) and (4), and then in (l), resulting 
in an equation for n and p .  After the solution for n is obtained equation (6)  will give 
the solution for v. This procedure is straightforward but rather complicated. 

For simplicity, as a first approximation, we keep only first-order terms in (3), (4) 
and (6). This corresponds to a linearization of all the equations. 

Case I .  Homeotropic cell 
For a homeotropic cell, n, = 1, n,, n, are small quantities. We have 

and 

where 

Case 2.  Planar-x cell 
We assume molecules are aligned in x direction at the plates, and n, N 1, nu, n, 

small. We then have 

PJ = P X V X J Z ,  (12) 

(1 3) P S  - P,Vy,zz9 

P , z  = 0, (14) 

(15) 

- 

where 

p, = $(a3 + a4 + a,), p y  = + a d .  

To this order of approximation, equation (6 )  is identically satisfied. 

Case 3. Planar-y cell 
For molecules parallel to y direction at the plates, n, N 1, n,, n, are small. We then 

obtain equations identical to (12)-( 14), and with x, y interchanged in (1 5) .  For a linear 
cell case 3 is different from case 2, assuming the long axis of the cell to be the x axis, 
say. The two cases are identical in an infinite radial cell. 
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1816 L. Lam et al. 

Case 4.  Untreated cell 
For a cell with untreated surfaces, let ninj N ( n p ,  ) = fh, ,  i, j = x, y ,  z.  We then 

have 

p,i = P o v i , z z ,  i = X, Y ,  (16) 

P,, = 0, 
where 

PO + $ @ I  + $(a3 + &j + a5 - az). (18) 
In cases 2 and 3, we may rescale x and y to make the effective viscosities in (12) 

and (1 3) to be identical to each other. The four cases considered then have the same 
equations as in (8) and (9), but with different p, there. Equations (8) and (9) are the 
same as that for an isotropic liquid [25], resulting in 

V(X, v) = -kVP(X, Y ) ,  (19) 
where V is the z-averaged v, and k = b2/12p. 

At this level, the major difference between anisotropic and isotropic liquids lies in 
the boundary conditions. For liquid crystals the pressure drop across the interface is 
given by 

AP = cJ(no)lR, (20) 
where the surface tension c~ is a function of no, n at the interface, and R is the radius 
of curvature of the interface in the plane of the cell. The fact that cr is indeed 
anisotropic has been shown theoretically [26] and experimentally [27]. 

For isotropic liquids, the wetting of the more viscous fluid on the plates gives a 
modified Ap [28], 

where V,  is the normal velocity of the interface. Equation (21) will certainly be 
modified for liquid crystals. Its use for nematic-air interface [19, 201 may not be 
justified. 

For the sake of discussion, in most cases of application one may adopt the results 
of (8)-(21) as far as qualitative results are concerned. The system is then treated as 
isotropic liquids with appropriate effective viscosities and 0 in (20) and (21) as some 
averaged surface tension. 

3. Experiments and discussion 
In all experiments [8-10, 15-23] the less viscous fluid (air, say) is injected either 

with constant flux or at constant pressure. For a linear cell, the former method [I61 
corresponds to U = const where U is Vat the far end of the cell from which the more 
viscous fluid flows out. This is also the assumption used in all theoretical studies 
[8, 11-14]. In this case, the problem has a single dimensionless control parameter 

- 1 = 12-(bJ ,  NJ w 
B 0 

which is constant throughout a single run of the experiment. Here the unit of length 
is w, p the viscosity of the displaced fluid, and the air is assumed to have zero viscosity. 
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Viscous fingering in liquid crystals 1817 

With the latter method [21,23], injection at constant pressure, l /B  changes with time. 
If quasisteady state is assumed for every moment the finger advances one may use the 
instantaneous U in (22) and obtain an effective control parameter which is time 
dependent. 

For a radial cell, one may use b as the unit of length and the control parameter 
of (22) is replaced by l/C = 12pL/o, which is time dependent for injection at constant 
pressure [17, 19, 20, 221. 

Since instabilities and the resulting shapes of viscous fingers in a linear cell 
depend sensitively on l /B [12, 141, one can expect the same to be true in a radial 
cell as l / C  changes. In other words, for air injected at constant pressure in a 
radial cell one should observe successive instabilities of the patterns in a single run 
(similar to the case in a linear cell [23]). In practice, this usually does not happen since 
the finite size of the cell (e.g. 6cm in radius [20]) limits the change of l/C to a small 
range. 

3.1. Radial cell without grooves 
In the radial cell experiments of Buka, Kertesz and Vicsek [18] using nematic 

mixtures, dendritic patterns were indeed observed. This confirms that intrinsic aniso- 
tropy in nematics has the same effect as extrinsic anisotropy [ 17 (a)] in stabilizing the 
tips and producing dendritics. (Note that extrinsic uniaxial anisotropy produces stable 
tips with only unpronounced sidebranches [29]. See figure 2 below.) Furthermore, a 
reentrant sequence of tip-splitting, dendritic, tip-splitting as a function of the flux of 
injected air is reported [18]. The mechanism of this phenomena is not yet clear. It is 
also noted [18] that surface treatment of the cell produced no appreciable effects. This 
may be understood from our linearized theory in $2, viz., the different surface 
treatments are expected to give quantitatively but not qualitatively different results. 

Similar reentrant sequence of patterns in nematic 8CB (in untreated cell) as a 
function of temperature was observed [19, 201. We note that the effective p’s in (1 l), 
(15), (18) and (21), and o in (20) and (21) are all temperature dependent. Reentrant 
phenomena will result naturally from a non-monotonic curve of effective l /C vs 
temperature. In [20] dense-branching patterns are found in the isotropic and smectic 
A phases of 8CB. 

3.2. Radial cell with concentric circular grooves 
A radial cell with concentric circular grooves on the inner surface of the lower 

square glass plate was constructed. The grooves have depth 0.3 mm, width 0.45 mm 
and edge to edge separation of 1 mm. There are 32 concentric grooves on the plate. 
The glass plates are cleaned but otherwise untreated. Nematic MBBA dyed red at 
23°C are put inside the cell. Spacers of thickness b are put a t  the four corners of the 
cell. The cell is then clamped at the corners. The edges of the cell is opened to air at 
atmospheric pressure po.  Air at constant pressure, po + p ,  is injected through a small 
hole of diameter 1.5 mm at the centre of the upper plate. 

In the thick cell, tip-splitting fingers and fingers with asymmetric sidebranching 
coexist with simple fingers (figure l(a)). The pattern is similar to the dense-branching 
ones [ 10,201 in the overall appearance. In the thin cell, the low p case (figure 1 (6)) has 
three branches and the high p case (figure 1 (c))  has more branches. In the latter, the 
trunk of the finger is smaller in width compared to that in the thick cell (with same 
p) ,  and there are tip-splittings with the splitted two branches growing equally strong. 
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1818 L. Lam et al. 

Figure 1. Patterns in radial cell of nematic MBBA with concentric circular grooves. (a) 
b = 0.12mm, p = 5 cm Hg. (b) b = 0.055 mm, p = 3 cm Hg. (c) b = 0.055 mm, 
p = 5cm Hg. The few small bubbles are leftovers before air is injected at  the centre. 

Patterns like those in figures 1 (6) and (c)  have not been seen before in either isotropic 
or anisotropic liquids. 

3.3. Radial cell with parallel grooves 
To further study the interplay between intrinsic and extrinsic anisotropies a radial 

cell with parallel grooves on the inner surface of the lower plate is used by Zheng 
et al. [22]. The grooves are 0.15mm in depth, 0.15mm in width, with edge-to-edge 
separation of 0.3 mm. The experimental procedure is similar to that in $3.2. 

In the thin cell, h = 0.07 mm, temperature T = 34"C, and p is varied from 0.5 
to 4.5cm Hg. A typical result is shown in figure 2(a ) .  Two dendritic fingers with 
rather sharp tips appear in the direction of the grooves. The left one is not identi- 
cal to the right one. Side branches appear in the lower vertical finger. All these 
features are absent in the isotropic liquid-air system (figure 2(b)). As p is varied, 

(4 (b)  
Figure 2. Patterns in thin radial cell with parallel grooves. The direction of grooves is left-right 

in the diagram (same in figure 3). (a) Nematic MBBA-air system. b = 0,07mm, 
p = 2.5cm Hg. (b) Isotropic liquid-air system (adopted from [29]). Much more pro- 
nounced sidebranches appear in (a) than in (b). Two dendritic branches appear in (a), in 
contrast to the many and single dendritic branch in radial and linear cells, respectively. 
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Viscous jingering in liquid crystals 1819 

Figure 3. Patterns in thick radial cell of nematic MBBA with parallel grooves. b = 0.12 mm, 
p = 4cm Hg. 

the sequence of patterns observed in this cell [22] differs from that reported in 
isotropic liquids [29]. 

In the thick cell, b = 0.12mm and T = 32°C. At p = 4cm Hg, sidebranched 
fingers perpendicular to the grooves grow from the center and also from different 
points along the horizontal axis (figure 3). This interesting result is quite unexpected. 

3.4. Intermediate cell 
In radial cells, there are always more than one finger. In a linear cell, even though 

a single finger is obtained, the side-wall effect is dominant. (We are considering 
here cases without local external perturbations. Otherwise, a fast-growing finger 
with a double a t  the tip can come out from the several fingers in a radial cell 
[30] in which isotropic liquid is used.) To generate a single finger without much 
interference from the side walls, a square cell with cleaned but untreated glass plates 
of size 13 x 13 x 0.5 cm3 each was used by Shao, Liu and Lam [21]. Spacers of width 
5 mm and thickness 1.5 mm were put at three edges between the plates. The middle 
spacer was cut in the middle into two parts leaving a hole of 1.5 x 1.5 mm2 in cross 
section. Air at constant pressure (po + p) was injected through this hole into the cell. 
A sequence of photographs were taken for each p [21]. Single fingers were formed. 
Some results are presented in figure 4. 

When nematic MBBA is used as the displaced fluid, forp < 3 cm Hg, the interface 
is almost a circle which grows to a radius of approximately I cm and stops expanding. 
For p > 3 cm Hg, the initially uncharacteristic interface is unstable and a pattern of 
multiple fingers is formed. The locations at which the fingers are formed are 
unpredictable. Some fingers grow faster than others (figure 4 (b)). Forp  > 15 cm Hg, 
the pattern is more like a piece of leaf, resulting from a series of tip-splitting bifurcations 
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1820 L. Lam et al. 

(d ) (el ( f )  

Figure 4. Viscous fingers in square cell with air injected through a hole in the middle of the 
lower edge. T = 20"C, b = 1.5mm. (a) Isotropic liquid (glycerin) displaced by air, 
p = 35cm Hg. (6)-(f) Nematic MBBA displaced by air. (b)  p = lOcm Hg. (c) 
p = 15cm Hg. ( d ) p  = 20cm Hg. ( e ) p  = 25cm Hg. ( f ) p  = 30cm Hg. 

(figure 4 (e)). As shown in figures 4 (b ) - ( f ) ,  asp  increases, the number of sidebranches 
increases and the width of the branch decreases. In comparison, when MBBA is 
replaced by glycerin, an isotropic liquid, the pattern is less leaf-like (figure 4 (a)). 

In contrast to those in a radial cell [IS], the patterns observed here are more 
asymmetric. 

3.5. Linear cell 
A linear cell similar to the one used by Saffman and Taylor [8] was constructed 

by Yang et al. [23]. The glass plate is 380 x 60 x 2mm3 in size. Spacers of width 
3 mm and thickness b are placed along the two long edges of the cell. The two ends 
of the cell are inserted into plastic blocks. Air is injected through one end and 
displaces nematic MBBA inside the cell. The displaced nematic flows into a cavity in 
the plastic block at the other end which is open to air. Details of the construction of 
the cell and the experimental setup are given in [23]. 

For p = 2cm Hg, a single finger was observed, with a hump developed as it 
propagated. For p = 4 cm Hg, as shown in figure 5 ,  a series of instabilities developed. 
The location of the asymmetric tip-splitting and the size of the smaller finger remained 
unchanged as the faster-growing finger advanced. The length of the farthest tip 
increased with time t as t"9, implying a time-dependent growth rate of tn9 .  This 
exponent of 1.9 is slightly larger than that of 1.6 observed by  Maher [31] in isotropic 
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Viscous fingering in liquid crystals 1821 

5-8. Figure 5. Viscous fingers in linear cell of nematic MBBA. The cell is the same for figurc 
T = 25OC, b = 0.3 mm, p = 4 cm Hg. Time increases from (a) to (d ) .  (a)  Simple finger. 
(b )  Hump. ( c )  Asymmetric tip-splitting. ( d )  One split finger grows while the other remains 
stable. 

liquids during the early state of many fingers coexisting with each other. This larger 
growth rate is due to the fact that we have a single finger with an essentially constant 
shape. The exponent is related to the nonstationary state in the experiment and the 
wetting of the nematic on the glass plates. 

For p = 8 cm Hg, a time sequence of instabilities was observed in a single run of 
the experiment. The shape of the finger transforms from simple finger to hump, 
side-wrinkling, tip-splitting and sidebranching (figure 6). In the theoretical study of 
isotropic liquids, these instabilities were attributed to noise [ 12-14] while anisotropic 
surface tension was shown to be essential in producing side-wrinkling [13]. Here, we 
have a natural medium (nematic) with intrinsic anisotropic surface tension and 
therefore side-wrinkling is observed. 

For lOcm Hg < p < 14cm Hg, a asymmetric dendrites (figure 7) was observed. 
The separation between two consecutive bifurcations on one side of the dendrite is 
found to decrease almost linearly for p = 10 cm Hg. For 4 cm Hg < p Q 14 cm Hg, 
the width of the first small finger decreases almost linearly with p [23]. 

For p = 16 and 18 cm Hg, sidebranching of the major finger was more dense and 
DLA-like structure was obtained (figure 8), similar to that predicted by Liang [14]. 
No dendrites were observed. Therefore, we have a reentrant sequence of tip-splitting, 
asymmetric dendrite, tip-splitting as a function onp. A similar reentrant sequence was 
found in a radial cell in [18] as a function of the injected-air flux, except that the 
dendrites there were more symmetric. 

In a thinner cell (b = 0.09 mm), sidebranching DLA-like structure was observed 
from the beginning [23]. More detailed results can be found in [23]. 

For the linear cell the results can be understood qualitatively by (i) the introduc- 
tion of a time-dependent effective control parameter, 

l/& = 12(PL/cJ)(w/@2 (23) 
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1822 L. Lam et al. 

Figure 6. Instabilities of viscous fingers in linear cell. p = 8cm Hg. (a) Simple finger. (b)  
Hump. (c), ( d )  Side-wrinkling. (e) Tip-splitting. ( f )  Sidebranching. Time increases from 
(4 to ( f  1. 
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Viscous Jingering in liquid crystals 

Figure 7. Asymmetric dendritic finger in linear cell. p = lOcm Hg. 

1823 

Figure 8. DLA-like structure in linear cell. p = 16 cm Hg. The end of the cell is slightly lower 
than the lower edge shown here. 
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1824 L. Lam et al. 

Figure 9. Sketch of a finger in a Hele-Shaw cell. 

where V,  is the velocity of the finger tip, and (ii) the assertion that the sequence 
observed in figure 6 appears as l/Befl increases. Point (ii) is based on the results in 
[12, 141. As shown in figure 9, V ,  - = (k/d)(pB - p c )  = ( k / d ) ( p  - Ap),  where 
p = pa  - pc  and A p  = p a  - pe  given by (21). Therefore, 

Note that Ap is a function of V,. In general, as the finger tip approaches the end of 
the cell, 5,  and hence l/BeR, increase with time. By (ii) a sequence of patterns 
appears. A reentrant sequence will appear if V,  is a nonmonotonic function of p .  See 
[24] for further discussion. 

The fact that the fingers are asymmetric in shape and not aligning symmetrically 
with respect to the central line (the x axis, say) of the cell is a special property of liquid 
crystals. From (1) and (3), with x and y interchanged, we see that a shear gradient ox,,, 
can induce a gradient P , ~ ,  i.e. a shear flow in the x direction will induce pressure 
difference in the transverse y direction and hence the asymmetries. 

For the radial cell with parallel grooves, the effective control parameter, 
l/Cefl = 12pV,/a, is different in the directions parallel and perpendicular to the 
grooves. The grooves make V,  smaller in the perpendicular direction, resulting in 
l/C, < l/Cll. Dendrites occur for a larger l /C  and hence the result of figure 2(a). 

4. Conclusion 
The advantages of using liquid crystals over isotropic liquids in viscous fingering 

in Hele-Shaw cells are: (i) All the instabilities predicted for isotropic liquids can also 
be found in liquid crystals. (ii) Liquid crystal has intrinsic anisotropic properties (such 
as anisotropic surface tension) which can be finely tuned. They can and sometimes are 
essential in producing dendritic and side-wrinkling fingers. (Local perturbations in the 
form of a bubble at the finger tip or a very thin thread along the cell can produce 
dendrites in isotropic liquids [32].) (iii) Unique features of the fingers appear in liquid 
crystals, such as asymmetric fingers, asymmetric dendrites and reentrant sequence of 
patterns. (iv) In the case of liquid crystals, more information on the dynamics of the 
fingers can be obtained from the molecular orientations which can be observed 
optically using crossed polarizers. This has been used fruitfully in the study of 
instabilities of moving nematic-isotropic interfaces [33]. 

It is true that the equations of motion for liquid crystals are more complicated 
than that for the isotropic liquids. However, as shown in $2, at least in the lowest 
approximation, this needs not be the case as the relevant equations describing the 
phenomena are concerned. 

In a Hele-Shaw cell, the essence of the approximation of the hydrodynamic 
equations is dropping a/ax and a/ay terms when compared to a/dz terms, etc. 
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(see Lamb [25]). The equations obtained in 42 follow from these kinds of approxi- 
mations and are new, to the best of our knowledge. It should be emphasized that 
the linearized version is just the first approximation. The next step is to solve 
the more complicated equations (1)-(7), which is obviously difficult if not impossible. 
However, the linearized version does point out the similarity (equation (19)) and 
the difference (equation (20)) with isotropic liquids. It does provide, for the first 
time, an explanation for the success of Buka et al. [19] in the use of isotropic-liquid 
results in fitting liquid crystal data, even though the linearized version has its obvious 
limits. 

Mechanism involved in tip-splitting, dendrites, sidebranching are discussed exten- 
sively for isotropic liquids in [l-171. In particular, the anisotropy of surface tension, 
together with noise, have been shown to be essential in producing side-branching 
[6, 131. The corresponding cases in liquid crystals are less clear. This has to await the 
proper development of the equations of motion, and this is exactly the direction we 
are undertaking in this paper. Our time-dependent ‘control parameter’ is offered 
under the quasisteady state assumption. It is useful in the absence of any calculable 
theory of any real understanding of the mechanisms. 

Note that one may generate backflow in a nematic by applying external electric 
or magnetic fields [34]. Viscous fingering in the presence of backflow remains to be 
explored. For large air pressure, the air may be able to reverse that part of nematic 
flowing backward and an asymmetric interfacial profile in the (x, z )  plane results. For 
smallp, a thin layer of nematic may actually flow backward, above which the air flows 
forward. 

In the short summary presented in this paper, at this early stage of development 
of the field, we, as well as others, are just in the process of accumulating experimental 
data, speculating about the physics, and attempting to build a theory. There remain 
a large number of interesting and unsolved problems. 
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